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Ranked retrieval 
• Thus far, our queries have all been Boolean. 

– Documents either match or don’t. 

• Good for expert users with precise 
understanding of their needs and the 
collection. 
– Also good for applications: Applications can easily 

consume 1000s of results. 

• Not good for the majority of users. 
– Writing Boolean queries is hard 
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Problem with Boolean search: 
feast or famine 

• Boolean queries often result in either too few 
(=0) or too many (1000s) results. 

• Query 1: “standard user dlink 650” → 200,000 
hits 

• Query 2: “standard user dlink 650 no card 
found”: 0 hits 

• It takes a lot of skill to come up with a query 
that produces a manageable number of hits. 
– AND gives too few; OR gives too many 
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Ranked retrieval models 

• Rather than a set of documents satisfying a query expression, 
in ranked retrieval, the system returns an ordering over the 
(top) documents in the collection for a query 

• Free text queries: Rather than a query language of operators 
and expressions, the user’s query is just one or more words in 
a human language 

• Ranked list of results: No more feast or famine 
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Scoring as the basis of ranked 
retrieval 

• We wish to return in order the documents 
most likely to be useful to the searcher 

• How can we rank-order the documents in the 
collection with respect to a query? 

• Assign a score – say in [0, 1] – to each 
document 

• This score measures how well document and 
query “match”. 
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Query-document matching scores 

• We need a way of assigning a score to a 
query/document pair 

• If the query term does not occur in the 
document: score should be 0 

• The more frequent the query term in the 
document, the higher the score (should be) 
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Jaccard coefficient 

• jaccard(A,B) = |A ∩ B| / |A ∪ B| 
• jaccard(A,A) = 1 
• jaccard(A,B) = 0 if A ∩ B = 0 
• Always assigns a number between 0 and 1. 
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Issues with Jaccard for scoring 

• Privileges shorter documents 
– We need a more sophisticated way of normalizing 

for length 

• It doesn’t consider term frequency  
– how many times a term occurs in a document 

• Does not account for term informativeness 
– How important is the term in the document 

| B A|/| B A| 
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Accounting for term frequency 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V| 
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Term frequency tf 

• The term frequency tft,d of term t in document 
d is defined as the number of times that t 
occurs in d. 

• We want to use tf when computing query-
document match scores. But how? 

• Raw term frequency is not what we want: 
– A document with 10 occurrences of the term is 

more relevant than a document with 1 occurrence 
of the term. 

– But not 10 times more relevant. 



Log-frequency weighting 
• The log frequency weight of term t in d is 

 
 

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc. 
• Score for a document-query pair: sum over 

terms t in both q and d: 
• score 
• The score is 0 if none of the query terms is 

present in the document. 
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Document frequency 

• Rare terms are more informative than frequent 
terms 
– Recall stop words 

• Consider a term in the query that is rare in the 
collection (e.g., arachnocentric) 

• A document containing this term is very likely to 
be relevant to the query arachnocentric 

• → We want a high weight for rare terms like 
arachnocentric. 
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Document frequency, continued 

• Frequent terms are less informative than rare 
terms 

• Consider a query term that is frequent in the 
collection (e.g., high, increase, line) 

• A document containing such a term is more 
likely to be relevant than a document that 
doesn’t 

• But it’s not a sure indicator of relevance. 
– How/when will it break? 
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idf weight 

• dft is the document frequency of t: the 
number of documents that contain t 
– dft is an inverse measure of the informativeness of 

t 
– dft  ≤ N 

• We define the idf (inverse document 
frequency) of t by 

 
– We use log (N/dft) instead of N/dft to “dampen” 

the effect of idf. 

)/df( log  idf 10 tt N=



idf example, suppose N = 1 million 

term dft idft 

calpurnia 1 6 

animal 100 4 

sunday 1,000 3 

fly 10,000 2 

under 100,000 1 

the 1,000,000 0 

There is one idf value for each term t in a collection. 

)/df( log  idf 10 tt N=



tf.idf weighting 
• The tf.idf weight of a term is the product of its tf 

weight and its idf weight. 
 

 
• Best known weighting scheme in information retrieval 
• Increases with the number of occurrences within a 

document 
• Increases with the rarity of the term in the collection 

)df/(log)tf1log(w 10,, tdt N
dt

×+=



Effect of idf on ranking 

• Does idf have an effect on ranking for one-
term queries, like 
– iPhone 

• idf has no effect on ranking one term queries 
– idf affects the ranking of documents for queries 

with at least two terms 
– For the query capricious person, idf weighting 

makes occurrences of capricious count for much 
more in the final document ranking than 
occurrences of person. 
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Score for a document given a query 

 
 
 
 

• There are many variants 
– How “tf” is computed (with/without logs) 
– Whether the terms in the query are also weighted 
– …  

 

Score(q,d) = tf.idft,dt ∈q∩d∑



tf-idf weighting has many variants 

Columns headed ‘n’ are acronyms for weight schemes. 



Weighting may differ in queries vs 
documents 

• Many search engines allow for different 
weightings for queries vs. documents 

• SMART Notation: denotes the combination in 
use in an engine, with the notation ddd.qqq, 
using the acronyms from the previous table 
– A very standard weighting scheme is: lnc.ltc 

• Document: logarithmic tf (l as first character), no idf 
and cosine normalization 

• Query: logarithmic tf (l in leftmost column), idf (t in 
second column), no normalization … 



tf-idf example: lnc.ltc 

Term Query Document Pro
d 

tf-
raw 

tf-wt df idf wt n’liz
e 

tf-raw tf-wt wt n’liz
e 

auto 0 0 5000 2.3  0 0 1 1 1 0.52 0 
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0 
car 1  1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27 
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53 

Document: car insurance auto insurance 
Query: best car insurance 

Exercise: what is N, the number of docs? 

Score = 0+0+0.27+0.53 = 0.8 

Doc length = 

 

12 + 02 +12 +1.32 ≈1.92



Binary → count → weight matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 
vector of tf-idf weights ∈ R|V| 



Documents as vectors 

• So we have a |V|-dimensional vector space 
• Terms are axes of the space 
• Documents are points or vectors in this space 
• Very high-dimensional: tens of millions of 

dimensions when you apply this to a web 
search engine 

• These are very sparse vectors - most entries 
are zero. 
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Queries as vectors 
• Key idea 1: Do the same for queries: represent them 

as vectors in the space 
• Key idea 2: Rank documents according to their 

proximity to the query in this space 
• proximity = similarity of vectors 
• proximity ≈ inverse of distance 
• We do this because we want to get away from the 

you’re-either-in-or-out Boolean model. 
• Instead: rank more relevant documents higher than 

less relevant documents 
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Euclidean distance is a bad idea 

• The Euclidean 
distance between q 

• and d2 is large even 
though the 

• distribution of 
terms in the query 
q and the 
distribution of 

• terms in the 
document d2 are 

• very similar. 



cosine(query,document) 
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Dot product Unit vectors 

qi is the tf-idf weight of term i in the query 
di is the tf-idf weight of term i in the document 
 
cos(q,d) is the cosine similarity of q and d … or, 
equivalently, the cosine of the angle between q and d. 
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Length normalization 
• A vector can be (length-) normalized by dividing each 

of its components by its length – for this we use the 
L2 norm: 
 

• Dividing a vector by its L2 norm makes it a unit 
(length) vector (on surface of unit hypersphere) 

• Effect on the two documents d and d′ (d appended 
to itself) from earlier slide: they have identical 
vectors after length-normalization. 
– Long and short documents now have comparable 

weights 

∑=
i ixx 2
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Cosine for length-normalized 
vectors 

• For length-normalized vectors, cosine 
similarity is simply the dot product (or scalar 
product): 
 
 
 
 

                                   for q, d length-normalized. 
 



 

cos(q ,

d ) =

q •

d = qidii=1

V∑



Cosine similarity amongst 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

wuthering 0 0 38 

• How similar are 
these novels 

• SaS: Sense and 
Sensibility 
• PaP: Pride and 
Prejudice, and 
• WH: Wuthering 
Heights? 

Term frequencies (counts) 

Sec. 6.3 

Note: To simplify this example, we don’t do idf weighting. 



3 documents example contd. 
• Log frequency 

weighting 
term SaS PaP WH 

affection 3.06 2.76 2.30 
jealous 2.00 1.85 2.04 
gossip 1.30 0 1.78 
wuthering 0 0 2.58 

• After length 
normalization 

term SaS PaP WH 
affection 0.789 0.832 0.524 
jealous 0.515 0.555 0.465 
gossip 0.335 0 0.405 
wuthering 0 0 0.588 

cos(SaS,PaP) ≈ 
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 
≈ 0.94 
cos(SaS,WH) ≈ 0.79 
cos(PaP,WH) ≈ 0.69 

Why do we have cos(SaS,PaP) > cos(SaS,WH)? 



Computing cosine scores 



Summary – vector space models 

• Represent the query as a weighted tf-idf vector 
• Represent each document as a weighted tf-idf 

vector 
• Compute the cosine similarity score for the 

query vector and each document vector 
• Rank documents with respect to the query by 

score 
• Return the top K (e.g., K = 10) to the user 



LANGUAGE MODELS 
Ranked retrieval 



Trouble with frequency-based models 

• Too literal 
• Can’t deal with misspellings, synonyms etc. 
• Natural language queries are hard to deal with 

if you don’t address these difficulties 



Language Model 
• Unigram language model 

– probability distribution over the words in a 
language 

– generation of text consists of pulling words out of 
a “bucket” according to the probability 
distribution and replacing them 

• N-gram language model 
– some applications use bigram and trigram 

language models where probabilities depend on 
previous words 



Semantic distance 



Sample topic 



Language Model 
• A topic in a document or query can be 

represented as a language model 
– i.e., words that tend to occur often when discussing a 

topic will have high probabilities in the corresponding 
language model 

– The basic assumption is that words cluster in semantic 
space 

• Multinomial distribution over words 
– text is modeled as a finite sequence of words, where 

there are t possible words at each point in the 
sequence 

– commonly used, but not only possibility 
– doesn’t model burstiness 



Has interesting applications 



LMs for Retrieval 

• 3 possibilities: 
– probability of generating the query text from a 

document language model 
– probability of generating the document text from 

a query language model 
– comparing the language models representing the 

query and document topics 

• Models of topical relevance 



Query-Likelihood Model 

• Rank documents by the probability that the 
query could be generated by the document 
model (i.e. same topic) 

• Given query, start with P(D|Q) 
• Using Bayes’ Rule  

 
• Assuming prior is uniform, unigram model 



Other query constructions 



Estimating Probabilities 
• Obvious estimate for unigram probabilities is  

 
 

• Maximum likelihood estimate 
– makes the observed value of fqi;D most likely 

• If query words are missing from document, 
score will be zero 
– Missing 1 out of 4 query words same as missing 3 

out of 4 



Smoothing 

• Document texts are a sample from the 
language model 
– Missing words should not have zero probability of 

occurring 
• Smoothing is a technique for estimating 

probabilities for missing (or unseen) words 
– lower (or discount) the probability estimates for 

words that are seen in the document text 
– assign that “left-over” probability to the estimates 

for the words that are not seen in the text 
 



Estimating Probabilities 

• Estimate for unseen words is αDP(qi|C) 
– P(qi|C) is the probability for query word i in the 

collection language model for collection C 
(background probability) 

– αD is a parameter 
• Estimate for words that occur is 
       (1 − αD) P(qi|D) + αD P(qi|C) 
• Different forms of estimation come from 

different αD 



Jelinek-Mercer Smoothing 
• αD is a constant, λ 
• Gives estimate of 

 
• Ranking score 
 
• Use logs for convenience  

– accuracy problems multiplying small numbers 

 
 
 



Compare with tf.idf 

- proportional to the term frequency, inversely    
proportional to the collection frequency 



Dirichlet Smoothing 

• αD depends on document length 
 
 

• Gives probability estimation of  
 
 

• and document score 



Query Likelihood Example 

• For the term “president” 
– fqi,D = 15, cqi = 160,000 

• For the term “lincoln” 
– fqi,D = 25, cqi = 2,400 

• document |d| is assumed to be 1,800 words long 
• collection is assumed to be 109 words long 

– 500,000 documents times an average of 2,000 words 

• μ = 2,000 



Query Likelihood Example 

•  Negative number because summing logs 
 of small numbers 



Query Likelihood Example 



Going beyond tf.idf 
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