
Ranked retrieval

Nisheeth

Ranked retrieval
• Thus far, our queries have all been Boolean.

– Documents either match or don’t.

• Good for expert users with precise
understanding of their needs and the
collection.
– Also good for applications: Applications can easily

consume 1000s of results.

• Not good for the majority of users.
– Writing Boolean queries is hard

Ch. 6

Problem with Boolean search:
feast or famine

• Boolean queries often result in either too few
(=0) or too many (1000s) results.

• Query 1: “standard user dlink 650” → 200,000
hits

• Query 2: “standard user dlink 650 no card
found”: 0 hits

• It takes a lot of skill to come up with a query
that produces a manageable number of hits.
– AND gives too few; OR gives too many

Ch. 6

Ranked retrieval models

• Rather than a set of documents satisfying a query expression,
in ranked retrieval, the system returns an ordering over the
(top) documents in the collection for a query

• Free text queries: Rather than a query language of operators
and expressions, the user’s query is just one or more words in
a human language

• Ranked list of results: No more feast or famine

4

Scoring as the basis of ranked
retrieval

• We wish to return in order the documents
most likely to be useful to the searcher

• How can we rank-order the documents in the
collection with respect to a query?

• Assign a score – say in [0, 1] – to each
document

• This score measures how well document and
query “match”.

Ch. 6

Query-document matching scores

• We need a way of assigning a score to a
query/document pair

• If the query term does not occur in the
document: score should be 0

• The more frequent the query term in the
document, the higher the score (should be)

Ch. 6

Jaccard coefficient

• jaccard(A,B) = |A ∩ B| / |A ∪ B|
• jaccard(A,A) = 1
• jaccard(A,B) = 0 if A ∩ B = 0
• Always assigns a number between 0 and 1.

Ch. 6

Issues with Jaccard for scoring

• Privileges shorter documents
– We need a more sophisticated way of normalizing

for length

• It doesn’t consider term frequency
– how many times a term occurs in a document

• Does not account for term informativeness
– How important is the term in the document

| B A|/| B A|

Ch. 6

Accounting for term frequency

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Sec. 6.2

Term frequency tf

• The term frequency tft,d of term t in document
d is defined as the number of times that t
occurs in d.

• We want to use tf when computing query-
document match scores. But how?

• Raw term frequency is not what we want:
– A document with 10 occurrences of the term is

more relevant than a document with 1 occurrence
of the term.

– But not 10 times more relevant.

Log-frequency weighting
• The log frequency weight of term t in d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
• Score for a document-query pair: sum over

terms t in both q and d:
• score
• The score is 0 if none of the query terms is

present in the document.

 >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

∑ ∩∈
+=

dqt dt) tflog (1 ,

Sec. 6.2

Document frequency

• Rare terms are more informative than frequent
terms
– Recall stop words

• Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

• A document containing this term is very likely to
be relevant to the query arachnocentric

• → We want a high weight for rare terms like
arachnocentric.

Sec. 6.2.1

Document frequency, continued

• Frequent terms are less informative than rare
terms

• Consider a query term that is frequent in the
collection (e.g., high, increase, line)

• A document containing such a term is more
likely to be relevant than a document that
doesn’t

• But it’s not a sure indicator of relevance.
– How/when will it break?

Sec. 6.2.1

idf weight

• dft is the document frequency of t: the
number of documents that contain t
– dft is an inverse measure of the informativeness of

t
– dft ≤ N

• We define the idf (inverse document
frequency) of t by

– We use log (N/dft) instead of N/dft to “dampen”

the effect of idf.

)/df(log idf 10 tt N=

idf example, suppose N = 1 million

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

)/df(log idf 10 tt N=

tf.idf weighting
• The tf.idf weight of a term is the product of its tf

weight and its idf weight.

• Best known weighting scheme in information retrieval
• Increases with the number of occurrences within a

document
• Increases with the rarity of the term in the collection

)df/(log)tf1log(w 10,, tdt N
dt

×+=

Effect of idf on ranking

• Does idf have an effect on ranking for one-
term queries, like
– iPhone

• idf has no effect on ranking one term queries
– idf affects the ranking of documents for queries

with at least two terms
– For the query capricious person, idf weighting

makes occurrences of capricious count for much
more in the final document ranking than
occurrences of person.

17

Score for a document given a query

• There are many variants
– How “tf” is computed (with/without logs)
– Whether the terms in the query are also weighted
– …

Score(q,d) = tf.idft,dt ∈q∩d∑

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Weighting may differ in queries vs
documents

• Many search engines allow for different
weightings for queries vs. documents

• SMART Notation: denotes the combination in
use in an engine, with the notation ddd.qqq,
using the acronyms from the previous table
– A very standard weighting scheme is: lnc.ltc

• Document: logarithmic tf (l as first character), no idf
and cosine normalization

• Query: logarithmic tf (l in leftmost column), idf (t in
second column), no normalization …

tf-idf example: lnc.ltc

Term Query Document Pro
d

tf-
raw

tf-wt df idf wt n’liz
e

tf-raw tf-wt wt n’liz
e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 + 02 +12 +1.32 ≈1.92

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights ∈ R|V|

Documents as vectors

• So we have a |V|-dimensional vector space
• Terms are axes of the space
• Documents are points or vectors in this space
• Very high-dimensional: tens of millions of

dimensions when you apply this to a web
search engine

• These are very sparse vectors - most entries
are zero.

Sec. 6.3

Queries as vectors
• Key idea 1: Do the same for queries: represent them

as vectors in the space
• Key idea 2: Rank documents according to their

proximity to the query in this space
• proximity = similarity of vectors
• proximity ≈ inverse of distance
• We do this because we want to get away from the

you’re-either-in-or-out Boolean model.
• Instead: rank more relevant documents higher than

less relevant documents

Sec. 6.3

Euclidean distance is a bad idea

• The Euclidean
distance between q

• and d2 is large even
though the

• distribution of
terms in the query
q and the
distribution of

• terms in the
document d2 are

• very similar.

cosine(query,document)

∑∑
∑

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(

Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3

Length normalization
• A vector can be (length-) normalized by dividing each

of its components by its length – for this we use the
L2 norm:

• Dividing a vector by its L2 norm makes it a unit
(length) vector (on surface of unit hypersphere)

• Effect on the two documents d and d′ (d appended
to itself) from earlier slide: they have identical
vectors after length-normalization.
– Long and short documents now have comparable

weights

∑=
i ixx 2

2

Cosine for length-normalized
vectors

• For length-normalized vectors, cosine
similarity is simply the dot product (or scalar
product):

 for q, d length-normalized.

cos(q ,

d) =

q •

d = qidii=1

V∑

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

• How similar are
these novels

• SaS: Sense and
Sensibility
• PaP: Pride and
Prejudice, and
• WH: Wuthering
Heights?

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.
• Log frequency

weighting
term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

• After length
normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing cosine scores

Summary – vector space models

• Represent the query as a weighted tf-idf vector
• Represent each document as a weighted tf-idf

vector
• Compute the cosine similarity score for the

query vector and each document vector
• Rank documents with respect to the query by

score
• Return the top K (e.g., K = 10) to the user

LANGUAGE MODELS
Ranked retrieval

Trouble with frequency-based models

• Too literal
• Can’t deal with misspellings, synonyms etc.
• Natural language queries are hard to deal with

if you don’t address these difficulties

Language Model
• Unigram language model

– probability distribution over the words in a
language

– generation of text consists of pulling words out of
a “bucket” according to the probability
distribution and replacing them

• N-gram language model
– some applications use bigram and trigram

language models where probabilities depend on
previous words

Semantic distance

Sample topic

Language Model
• A topic in a document or query can be

represented as a language model
– i.e., words that tend to occur often when discussing a

topic will have high probabilities in the corresponding
language model

– The basic assumption is that words cluster in semantic
space

• Multinomial distribution over words
– text is modeled as a finite sequence of words, where

there are t possible words at each point in the
sequence

– commonly used, but not only possibility
– doesn’t model burstiness

Has interesting applications

LMs for Retrieval

• 3 possibilities:
– probability of generating the query text from a

document language model
– probability of generating the document text from

a query language model
– comparing the language models representing the

query and document topics

• Models of topical relevance

Query-Likelihood Model

• Rank documents by the probability that the
query could be generated by the document
model (i.e. same topic)

• Given query, start with P(D|Q)
• Using Bayes’ Rule

• Assuming prior is uniform, unigram model

Other query constructions

Estimating Probabilities
• Obvious estimate for unigram probabilities is

• Maximum likelihood estimate
– makes the observed value of fqi;D most likely

• If query words are missing from document,
score will be zero
– Missing 1 out of 4 query words same as missing 3

out of 4

Smoothing

• Document texts are a sample from the
language model
– Missing words should not have zero probability of

occurring
• Smoothing is a technique for estimating

probabilities for missing (or unseen) words
– lower (or discount) the probability estimates for

words that are seen in the document text
– assign that “left-over” probability to the estimates

for the words that are not seen in the text

Estimating Probabilities

• Estimate for unseen words is αDP(qi|C)
– P(qi|C) is the probability for query word i in the

collection language model for collection C
(background probability)

– αD is a parameter
• Estimate for words that occur is
 (1 − αD) P(qi|D) + αD P(qi|C)
• Different forms of estimation come from

different αD

Jelinek-Mercer Smoothing
• αD is a constant, λ
• Gives estimate of

• Ranking score

• Use logs for convenience

– accuracy problems multiplying small numbers

Compare with tf.idf

- proportional to the term frequency, inversely
proportional to the collection frequency

Dirichlet Smoothing

• αD depends on document length

• Gives probability estimation of

• and document score

Query Likelihood Example

• For the term “president”
– fqi,D = 15, cqi = 160,000

• For the term “lincoln”
– fqi,D = 25, cqi = 2,400

• document |d| is assumed to be 1,800 words long
• collection is assumed to be 109 words long

– 500,000 documents times an average of 2,000 words

• μ = 2,000

Query Likelihood Example

• Negative number because summing logs
 of small numbers

Query Likelihood Example

Going beyond tf.idf

D

q

M

q

D

	Ranked retrieval
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Language models
	Trouble with frequency-based models
	Language Model
	Semantic distance
	Sample topic
	Language Model
	Has interesting applications
	LMs for Retrieval
	Query-Likelihood Model
	Other query constructions
	Estimating Probabilities
	Smoothing
	Estimating Probabilities
	Jelinek-Mercer Smoothing
	Compare with tf.idf
	Dirichlet Smoothing
	Query Likelihood Example
	Query Likelihood Example
	Query Likelihood Example
	Going beyond tf.idf

